Approximately Intelligent: Planning for an Uncertain Future in Computing

by

June Knauth

A Thesis submitted to the Faculty

in partial fulfillment of the requirements for the

BACHELOR OF ARTS

Accepted

Eric Kramer, Thesis Advisor

Zachary While, Second Reader

John B. Weinstein, Provost and Vice President

Bard College at Simon’s Rock

Great Barrington, Massachusetts

2023



Dedicated to those who refuse to see the way they’re asked to.

ii



Acknowledgements

This thesis was the product of more people, communities, and ideas than I can count.
Here are a few of them.

First, the people in my life who have kept me afloat this year. I would like to thank
Nur Goldner, who has given me more than I can say and remains the only person
I can’t not talk to. Lee Heintzelman, who has been there always, and whom I've
never stopped clicking with (thanks bips). Nora, Addie, Patience, and Maya, who
have added wonderful flavor to this very long process. Vi, who has given me so many
stories. Wilder, who’s quick on the bit. Piper Kilgore, who completes the set. And my
family, Tonya, Rick, Matthew, and Katherine, who have made me the woman I am.

The people and professors at Simon’s Rock and elsewhere who have tirelessly worked
to support and educate me over four long years. FEric Kramer, who has been the
best advisor I could have asked for and always been honest. Zack While, who has
gone above and beyond his job description. John Hawley, who conducts a hell of an
interview. Dan Neilsen, who succeeded in convincing me not to go into Economics.
Maryann Tebben, who challenged me at unexpected times. And KellyAnne McGuire,
who has been an incredible advocate for everyone thesising this year, and whose snacks
have kept us all going.

The Noisebridgers who have provided both inspiration and technical knowledge- Loren
MeclIntrye, Sophia Wisdom, and TJ.

The communities and spaces who have brought together so many incredible people,
and those who enable and populate them- freeradical, tek, pixel, the Super Dimension
Fortress, and all the Fedizens and damgudcyberchatters.

iii



Contents

Abstract

Common Acronyms

1

2

Introduction

Context

2.1 What is Efficiency? . . . . . . ...
2.2 What is a Neural Network? . . . . ... ... . ... ... ......
2.3 History of Neural Networks . . . . . . ... .. ... ... ......

Related Works

Approximate Multipliers
4.1 ApproxTrain . . . . . . . . . .

Technical Investigation: AM-based Neural Network
5.1 Technical Details . . . . . .. .. ... ...
5.2 Training Results . . . . . . . . .. ... oo

Conclusion

Appendix
7.1 Lab Notebook . . . . . . . . . .
7.2 Code . . .

iv

28
30
31

36



Abstract

Artificial Intelligence (Al), a field which is currently undergoing a massive techno-
logical and financial boom, has created possibilities in computing which are still being
explored. However, it requires significant amounts of computing (and thus electrical)
power. Few players in the Al space are considering the environmental effects of Al
training or whether the technology can remain practical as electricity grows scarcer

due to resource depletion.

In this thesis, I explain in simple terms what Al is, how it came to be, and why it
demands so many resources. From there, I explore Approximate Multipliers (AMs) a
new technique which can drastically reduce the energy usage of a neural network —
the computational backbone of modern AI. Most previous investigations into AMs
did not consider their use during training, which accounts for the majority of energy

consumed by a neural network.

Using ApproxTrain, a framework which allows implementation and testing of AMs
within the AI development library TensorFlow, I reimplement the AlexNet network, a
common choice for testing new Al technologies. I test performance in training and
inference on the CIFAR-10 dataset, which contains 60,000 images in 10 categories
for classification. I show that approximate multipliers do not reduce classification

accuracy, even when used during training.



Common Acronyms

AGI Artificial General Intelligence

AT Artificial Intelligence

AM Approximate Multiplier

CPU Central Processing Unit

DNN Deep Neural Network

FLOPs Floating Point Operations per Second
FP Floating Point

GPU Graphics Processing Unit

MBM Minimally Biased Multiplier

ML Machine Learning

NN Neural Network

vi



Chapter 1

Introduction

In today’s computing landscape, Artificial Intelligence (AI) is the ultimate buz-
zword. Deep Neural Networks (DNNs) have solved problems previously believed to
be unsolvable, astonishing experts and laymen alike. The possibilities afforded by
recent advances in the technology seem endless; state-of-the-art models such as GPT-4
can produce high-quality output difficult to distinguish from human writing, score
far above the average on most standardized tests, and use tools to interact with their
environments [49]. OpenAl, the company responsible for developing GPT-4, have
been forthcoming about their goal of developing Artificial General Intelligence (AGI),
[53], an Al system that is generally smarter than a human. OpenAl claims that

such a system could "elevate humanity," accelerating scientific and social progress.
The veracity of such claims remains unclear, and the possibilities, limitations, and

implications of new Al technologies will continue to change and evolve.

What is immediately clear, however, is that the field is attracting an immense
amount of competition— and funding. The 2023 Stanford AI Index Report [4] found

that in 2022, global corporate investment in Al ventures totaled $189.6 billion, marking



a 13-fold increase over the last decade. The AI boom may have brought staggering
amounts of capital into the field and led to important technological advancements,

but it has come at a cost.

Though it is difficult to directly estimate the prices paid by OpenAl and its
competitors for hardware and electricity, estimates using standard cloud computing
pricing place the cost to train their GPT-3 model at somewhere between $4.6 million
and $12 million [50] [51]. This economic cost is only a counterpart to the carbon
emissions generated by the energy consumed by training. GPT-3’s training consumed
1,287 MWh of energy, generating 502 metric tons of CO, emissions [59], 8 times the
amount emitted by the average car over its expected lifetime [63]. From a sustainability
perspective, we must consider not only the carbon emissions of electricity generation but
also the damage done by resource extraction and industrial production of computing
hardware, much of which will be destined for obsolescence within a few years [21].
The AI boom is reminiscent of another field which experienced massive growth — and

eventually a proportionally massive crash — in recent years.

Nowhere is the shortsightedness of our modern relationship to technology more
visible than in the cryptocurrency ("crypto") sphere. Created to address fears that
centralized currencies required too much trust in third parties, Bitcoin and the many
cryptocurrencies that followed in its footsteps adopted new decentralized technologies.
These technologies are based on intentionally duplicative systems used to create, store,
and transact digital currency [7]. While many of these systems are in some way
wasteful, the most direct environmental damage comes from proof-of-work (PoW)
mining, which is the set of algorithms currencies like Bitcoin use to create and transact
currency. In PoW mining, many participants enter a race wherein they perform
brute-force computations (i.e., guessing) to solve a difficult math problem. The first

participant to solve the problem is awarded a predetermined amount of currency.



This brute-force computation is unnecessary and wasteful; the "work" miners are
asked to "prove" is the spent electricity they must consume and pay for to participate
in the race. The competitive basis of this technique means that the cryptocurrency
world operates in a constant battle to find the cheapest electricity and most powerful
computers, ensuring a steadily growing cost to the planet. Mining of Bitcoin alone
ranks 27th in the world on the list of nations’ electricity consumption, resulting in an
annualized equivalent emitted 71.9 megatons of carbon dioxide (MtCO2e), slightly

less than the greenhouse gas emissions of New Zealand [9].

Although Bitcoin and its descendants achieve the goals their designers envisioned,
they do so without consideration for their effects on the planet and the living things on
it. The crypto sphere persists, and does so profitably, because of continued investment
by both large firms and individual people who believe in the technology. In 2022,
crypto attracted $23.1 billion in investment activity [54]. Like Al the crypto boom
created new technologies, solved new problems, and attracted attention from investors
and consumers alike. But it’s not enough to say that a particular technology solves
problems economically today. If we are going to build a sustainable future, much more

research must be done, and with a new focus in mind.

In recent years, a new aesthetic movement has emerged which seeks to answer
the question "What does a sustainable civilization look like, and how can we get
there?" This movement, dubbed Solarpunk [2], bucks the moody overtones of dystopic
science fiction in favor of hopeful utopianism, envisioning a lush, green future where
the practical merges with the beautiful. Solarpunks hold that by propagating their
optimistic aesthetic they will inspire solutions that move humanity forward, away from
climate destruction and artificial scarcity. The movement has inspired researchers,

and this thesis is envisioned and executed wholly in support of Solarpunk goals.



One recent Solarpunk-associated project sought to change the paradigm of the
modern web, beginning with one question— when a user visits a webpage, how
should their request be directed? Today, a site may be served from one of hundreds
or thousands of servers, and routing requests is a complex problem. For for-profit
services, only one goal informs that process: speed. Faster page loads make users more
likely to stay on a site, thereby generating more profit in a highly competitive online
economy [68]. But it is no longer sufficient to view our relationship with technology
through a narrow capitalist lens. We must consider sustainability, ecological impact,

and planning for an uncertain future.

In 2021, the Solar Protocol website went live, powered by a distributed and self-
organizing network [8]. Rather than directing queries based on latency and server
load, the network asks one question: where is the sun shining? The network is made
up of low-powered server equipped with photovoltaic panels and batteries. These
servers exchange data about how much solar energy they are collecting, and every two
minutes, the station with the highest energy availability is named the active server. All
requests to solarprotocol.net are served by that station. A user in the United States
accessing the page at night might be served from Kenya or Australia. The Internet
is a global network, and the sun is always shining somewhere. The Solar Protocol
integrates those principles and challenges the idea that speed should be our primary
concern, intentionally sacrificing latency in exchange for a reliable and decentralized

solar-powered network.

This thesis seeks to apply the same lens to the burgeoning field of AI. How can we
work towards a future where the enormous practical benefits of Al merge with the
shrinking availability of electrical resources? In simple terms, how can Al be made
more efficient? Capitalism acts to delay and externalize the consequences of wanton

resource consumption, and to look to the future we must look outside of profitability,



just as the Solar Protocol project has. To that end, this thesis will explore technologies
which can make reduce the carbon footprint of Al. I will begin with a contextual
investigation which seeks to explain in simplest terms what Al is and how it functions.
With this knowledge in hand, I explore, implement, and test Approximate Multipliers,

a promising technology which can accelerate neural network training and inference.



Chapter 2

Context

2.1 What is Efficiency?

A computer, defined succinctly, is a machine which performs computations. These
computations are performed by logical circuits residing within Central Processing
Units (CPUs) and Graphics Processing Units (GPUs), each containing billions of
transistors, devices which can modify and switch electrical current. By connecting the
inputs and outputs of many transistors to one another in a vast and complex network,
logical circuits are formed which can execute instructions and perform computations

(see Figure 2.1).

When an electrical current reaches a transistor that is "switched off", thermodynamics
dictates that its energy cannot simply vanish. Instead, the transistor’s high resistance
converts the energy into heat, which must then be dissipated. Practically speaking,
all of the energy that enters a processor leaves it as waste heat [21]. Maximizing the
amount, of computing power that can be extracted from this energy maximizes the

efficiency of the computer [16].



Figure 2.1: Microscopic imaging of the circuitry of an AMD Am386 CPU [57].

At the datacenter scale, efficiency is measured in terms of FLOPs per watt. FLOPs,
or Floating-Point Operations per Second, are a common measure of computing power,
since floating-point operations are one of the most common workloads in datacenter and
high-performance computing environments. Floating point multiplication specifically
accounts for almost all of the computational power used in training and evaluating
deep neural networks [30], which are the computational backbone of modern Al
technologies (see Section 2.4), and is thus of particular interest to the aims of this
thesis. FLOPs per watt quantifies how many floating point operations a datacenter or
supercomputer can perform on a per-watt basis. The most efficient supercomputers
are tracked by the Green500 list [46], which is updated biannually. The most recent
ranking as of November 2022 saw the Flatiron Institute’s Henri system take the lead

at 65.09 GigaFLOPs per watt [52]. The design of more efficient supercomputers and



datacenters is an ongoing challenge in hardware and infrastructure engineering, but it

is not the only way to decrease the energy usage of a given workload.

The design of more efficient general-purpose hardware is important and necessary,
but within the scope of this work, I am only concerned with the efficiency of training and
evaluating neural networks. Processors which are designed for a particular workload
can be much more efficient, since they do not need to generalize. For instance, in
cryptocurrency mining, application-specific integrated circuit (ASIC) miners can far
exceed the efficiency of CPUs and GPUs [39], allowing vastly higher performance per
watt. Applying this design philosophy to deep neural networks could lead to much
lower energy usage. But we must first understand what neural networks are, why
)

multiplication is key to the aims of this thesis, and how we can exploit neural networks

structure to optimize them.

2.2 What is a Neural Network?

The goal of a neural network (NN) is to approximate a solution to a complex
function using training and testing data. A network consists of layers of neurons
connected to each other in a particular structure known as an architecture [20]. The
first layer is the input layer, which is connected to one of more hidden layers; the
final layer is known as the output layer. Fach neuron in each layer takes numerical
inputs and multiplies them by weights, then applies an activation function to produce
an output. Networks with more than one hidden layer are referred to as deep neural
networks (DNNs). The result of the network’s evaluation is observed at the output

layer.

In simple (feed-forward) networks, the outputs of previous layers act as inputs

to following layers, but more complex (recurrent) networks use the outputs of later



layers as inputs to previous ones. A neural network can be visualized as a graph by
diagramming neurons as nodes and their connections as edges. A feed-forward network
is a directed acyclic graph. That is, the graph contains no loops, and its connections
flow in one direction. A recurrent network is a directed cyclic graph, as it does contain
loops. By passing an input to the network and calculating the results of each layer, an
output can be calculated; this is known as forward propagation. This result can then
be compared to the expected output to calculate the error. Then backpropagation is
performed and an optimization algorithm updates the weights of the inputs for each
neuron in each layer. To motivate this structure, it is useful to have in mind a brief

history of neural networks and to understand their biological inspirations.

Figure 2.2: A feed-forward neural network diagrammed as a directed graph, made up
of an input layer, a hidden layer, and an output layer [48]. Each gray circle is one
artificial neuron.

2.3 History of Neural Networks

In 1946, McCulloch and Pitts’” paper "A logical calculus of the ideas immanent
in nervous activity" introduced the idea of the artificial neuron [40]. Its authors, a
neurophysiologist and logician, built their model to imitate the behavior of neurons in
the human brain. They focused on replicating the functionality of the three major

components of a neuron: the soma, the dendrite, and the axon (see Figure 2.3). The



Terminal buttons
(form junctions
with other cells)

Cell body Dendrites
(soma) (receive messages .
from other cells) Dendrites
(from another
ﬂ neuron)
Axon /\

(passes messages away
from the cell body to
other neurons, muscles,
or glands)

Action potential

(electrical signal

traveling down Myelin sheath

the axon) (covers the axon of some
neurons and helps speed
neural impulses)

Figure 2.3: A simplified diagram of the components of a human neuron [62].

dendrite receives signals from other neurons, the soma processes them, and the axon
transmits the output of the neuron [62]. The researchers simplified these components
to create a computerized equivalent, today known as the McCulloch-Pitts (MCP)

neuron.

Ty

= e - rj/.f all \\
to——/ § —ye{0,1}
z3” o

Figure 2.4: A diagram of the MCP neuron. The activation threshold is 6 [10].

10



The MCP neuron models the dendrite with n binary inputs z; ... x,, each with a
value of 1 or 0 (active or inactive). These inputs can be either excitory or inhibitory.
The "soma' is an additive computation which checks if the number of active excitory
inputs is greater than a certain value, called the activation threshold. If this is true
and no inhibitory inputs are active, the "dendrite" output is 1. If the count falls below

the threshold or there are any active inhibitory inputs, the output is 0.

The MCP neuron can simulate several first-order logical operations, such as OR and
NOT (see Figure 2.5). However, a single neuron is unable to represent all functions,

and the MCP neuron is unable to learn; its activation threshold must be set manually.

To— 1 I—' yef0,1}

Figure 2.5: An MCP neuron which evaluates an OR function. If any of the inputs are
active, the neuron will output 1 [10].

In 1957, the MCP neuron was improved upon by Rosenblatt [56], who also created
a physical model known as the Mark 1 Perceptron (see Figure 2.6). Rosenblatt
introduced the ideas of weights and biases, an important feature in modern neural
networks (see Section 2.3), allowing the Mark 1 Perceptron to learn from training
examples. In 1969, Minsky and Papert published their seminal work Perceptrons
[41], which proved that Rosenblatt’s single-layer perceptron could not simulate several
classes of logical functions, including XOR. To represent more functions, it is necessary
to connect perceptron layers to each other, with the output of one layer becoming the

input to another. The neurons in each layer form a network which carries data from

11



I
" i
o
k
|
I
[l
¥
/]

=

= v

g =

Figure 2.6: Rosenblatt’s Mark 1 Perceptron at the Cornell Aeronautical Laboratory.
It contained 400 neurons connected to a 20x20 array of sensing photocells [37].

the input to the output, the so-called "multi-layer perceptron.” This structure can
be generalized to reach the concept of the feed-forward neural network. To discuss
feed-forward neural networks, I must explain in more detail the properties of modern

artificial neurons.

Structure of an Artificial Neuron

A modern computerized neuron is a function with m + 1 inputs, all but one of
which are numerical signals x; through x,,, with the xy input denoting the bias. The
bias term is always 1 with its own weight wy. The rest of the inputs have weights w,
through w,,. These weights are multiplied by the inputs and the resultant values are

summed to produce the value y (see Figure 2.7).

Y = Wo + T1W1 + ToWy + ... + TpWp, (2.1)

12



An activation function is applied to y to give the final output of the neuron. Common

_1

Tre=v" Hyperbolic Tangent

activation functions include the Sigmoid function o(y) =

tanh(y) = ©= and ReLU, Rectified Linear Unit, defined piecewise as:

e¥Y+e~Y’

0 ify<0
ReLU(y) =

x ity>0

Or more succinctly as ReLU(y) = max(0,y). The activation function typically scales
the output to within a particular interval, often from 0 to 1, and introduces nonlinearity,

which is desired for effective training [20].

Figure 2.7: A single artificial neuron with inputs z; to z,,, weights w; to w,, and a
sigmoid activation function [6].
Training

Training as a process involves three datasets which contain the same type of data:
training, testing, and validation sets. Often these datasets are randomly selected

("split") from a larger dataset to ensure each dataset contains the most variability

13



possible; more diverse examples will lead to improved training results because the
model can better grasp patterns in the underlying data and generalize to new inputs

61].

First, the network is evaluated on data from the training set. The process of
calculating neuron inputs and outputs is known as forward propagation. Forward
propagation gives a set of values at the output layer. Then this result can be compared
to the known correct output, often called the target or ground truth. A loss function
calculates the error between the output and target, and the error is backpropagated to
adjust the weights of each neuron, a process known as learning. The goal of learning
should be to find the set of weights that give the smallest possible value (minimum)
of the loss function as efficiently as possible. This is an optimization problem often
solved by stochastic gradient descent (SGD)or similar algorithms. By traversing the
surface of the loss function, the optimization algorithm attempts to find the best

possible local minimum, and ideally the global one.

Figure 2.8: A gradient descent algorithm approaching the minimum of a gradient,
seen from above with contour lines to represent depth [70].

14



After several training iterations, the network is evaluated against the validation
dataset. Often, this will take place at the end of each epoch, wherein the network learns
on the entire training dataset once. Since the validation dataset contains examples
the network has not encountered before, it is a useful benchmark for common training
pitfalls, such as overfitting. Overfitting occurs when the network models the training
data too specifically. This leads to low loss values on the training set, but results in a
failure to generalize to new data. The validation set helps identify this problem in
the training phase, giving users the ability to avoid wasted compute resources and
decreased accuracy by stopping training early. Finally, when training is complete, the
model is evaluated against the test set, to test the performance of the final model
against new data. While training uses loss as the metric to update the weights, when
evaluating against the test set, metrics such as accuracy or precision are used to test
the model’s performance [20]. Evaluating the trained model is known as inference.
This overview of the training process is applicable to most types of neural networks.

Below is a brief synopsis of the most common architectures.

Feed-Forward Networks

Feed-forward describes a network architecture in which information flows through
the network in only one direction. They are the direct descendants of multi-layer
perceptrons (see Section 2.3). In a feed-forward network, the input is evaluated by
successive layers where the output of the previous layer forms the input of the next.
One common use case for this architecture is the Convolutional Neural Network (CNN),
which has applications in object recognition and image processing [3]. AlexNet [35],
used to test approximate multipliers in the Technical Investigation (see Section 5)

portion of this thesis, is one such network.

15



Recurrent Networks

Recurrent neural networks (RNNs), in contrast to feed-forward networks, utilize the
output of later layers as inputs to earlier ones in successive evaluations. This allows
the network to exhibit temporal behavior akin to memory. RNNs are often used in
processing sequential data, since the network can "remember" previous data in the
sequence while processing a long input [3]. RNNs are a key tool in natural language
processing, where the network can operate on a sequence of words in a sentence, and
were the state of the art in this field until the development of the Transformer model

in 2017.

Transformers

The Transformer model, as described in the now-legendary paper "Attention is all
you Need" [67], takes a step back from recurrent neural networks. The architecture
of a Transformer is a stack of building blocks known as encoders and decoders (see
Figure 2.9), each of which contains a feed-forward neural network and a multi-headed
attention (MHA) mechanism. The encoder stack processes data sequentially, with the
output of each encoder flowing into the MHA mechanism of the subsequent encoder.
The decoder stack is similar, except that the output of the encoder stack forms one
input to the MHA mechanism of every decoder. The MHA mechanism plays a similar
role to recurrency in neural networks, serving as a kind of "memory". MHA, however,
is more complex and allows the Transformer to attend to the output of every previous
encoder and decoder, giving the model an enormous amount of contextual awareness.
The Transformer model has enabled the development of new Large Language Models
(LLMs) such as GPT-4 [49], BeRT [14], and LLaMA [65], all of which showcase

groundbreaking performance on natural language tasks.

16



Output
Probabilities

(¢ )
Add & Norm
Feed
Forward
e ™\ Add & Norm
_ .
Add & Norm Mult-Head
Feed Attention
Forward 7 7 Nx
— ]
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
— J \ —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 2.9: Internal structure of the Transformer model, with the encoder stack on
the left and the decoder stack on the right [67].

2.4 Why is multiplication so important?

Neural networks, as we have seen, are essentially composed of multiplication. To
evaluate the network, the weights and values of every neuron must be multiplied and
summed. This operation accounts for ~99% of the total compute resources involved in
modern DNNs [30], and is therefore a key consideration in improving efficiency. Why

is multiplication such a computationally expensive operation?

17



Consider multiplying two numbers using a common written method (long multipli-

cation):

543
X
867
3801
3258
4344

470781

It is necessary to multiply each digit of the multiplier by the multiplicand and then add
them. The quadratic nature of this naive algorithm is immediately clear; multiplying
two n-digit numbers requires O (n?) single-digit arithmetic operations. Put simply,
because multiplication is repeated addition, it will always involve many operations.
When dealing with high-precision floating point numbers like those used in modern
DNNSs, which may have up to 32 binary digits [29], this quadratic complexity becomes

a major concern.

Modern algorithms for computerized multiplication are highly optimized both math-
ematically and in their hardware implementations. The current best-known algorithm
for integer multiplication operates in time O(nlogn) [26]. Even so, multiplication
remains highly compute intensive. Reducing this cost, therefore, is an important topic
in modern DNN research. Many techniques exist, and a review of the most common

will motivate the choices made in the technical investigation (see Chapter (5).

18



Chapter 3

Related Works

Reducing the computational (and thus energy) cost of DNNs is a problem which has
seen a great deal of attention in recent years. One technique, known as quantization,
involves reducing the number of bits (binary digits) used to store the model weights,
thus decreasing the cost of multiplying them. However, this technique is known to
reduce model performance if used too aggressively [30]. The authors of [12] showed
that while quantization (to a 16-bit fixed-point representation) did not significantly
increase inference error in a CNN, it prevented the network from learning to classify
the data if used during training. Very precise representations are important during

training [19], so quantization is most often applied for inference.

Sparsification, also called pruning, is another emerging technique. To sparsify a
model, an algorithm prunes model weights by setting them to zero, allowing that
weight to be ignored. Even a very sparse model can achieve results on par with a
non-sparse one [28]. To maximize performance, in works such as [17] and [25], the
authors prune weights and then retrain the model. Recently, however, it has been

shown that model pruning without retraining (one-shot pruning) is possible on models

19



as complex as the Transformer [17] with negligible performance loss. Discussion of
sparsification during training is ongoing, but it has been applied successfully [69, 36].
Note that sparsification necessitates complex additional algorithms to select weights

for pruning [28].

Techniques like sparsification and quantization are viable methods for reducing
the energy usage of a neural network, but are often approached from the perspective
of enabling model inference on consumer devices, also known as edge computing.
These techniques reduce the footprint of the model in memory, which is often the
limiting factor on edge devices [30]. To this end, models like Stanford’s Alpaca [55]
and Berkeley’s Koala [18] fine-tune small language models using the output of larger
ones. By curating this output data, models can be trained which run on consumer
GPUs and excel at one task (such as instruction-following), performing to a high
standard. For example, responses to Koala are rated by humans as on-par with
ChatGPT about half the time [18]. This research will become more important as Al
becomes more commonplace on consumer devices and in everyday life; reducing the
energy consumption of inference will reduce the carbon footprint of these use cases.
However, training remains a compute-and-energy-intensive process with a large carbon
footprint [63]. The above techniques are most effective in the inference phase and

require additional implementation work.

By contrast, approximate multipliers can be utilized in pretrained models with no
change to architecture, no retraining, and minimal or no performance degradation
[58, 32, 31, 23], acting as a drop-in replacement for precise multipliers. AMs are also
a promising technology for reducing the energy consumption of training, again with
minimal or no performance degradation [60, 24] and in some cases a slight performance
increase [19]. They are especially useful in datacenters, which have abundant memory

but consume immense amounts of energy [21]. AMs can also be used in concert with

20



other techniques. [19] combined AMs with pruning and retraining in a CNN and
showed improved accuracy compared to 32-bit precise multipliers for most levels of

sparsity.

Much of the study of AMs in deep neural networks has been limited to inference
applications. For example, in [58], the authors replaced precise multipliers with AMs
in AlexNet to study whether DNNs were a viable application of the technology. By
exchanging precise multipliers for MBMs, they demonstrated a 57x reduction in power
and 27x reduction in area contributed by the multiplier, with negligible degradation to
classification accuracy. However, they did not train the network using AMs, but only
tested classification performance using weights from training using precise multipliers.
Similarly, in [32], [31], and [23], authors implemented AM-based neural networks in

order to test novel AM designs, but only used pretrained networks.

In 2019 [24] implemented a simulated AM which added random noise to the result
of a precise multiplier. They used this simulated AM to train a CNN and found that
it resulted in minimal accuracy degradation. Then in 2021 [60] trained a small CNN
using AMs and found that it achieved the same classification accuracy as the same
architecture trained using precise multipliers. To enable further testing of AM-based
DNNs, a library was needed which would allow easy implementation of AM layers
within frameworks like TensorFlow [38]. The first such library was TFApprox [64],
which allows GPU simulation of AMs within TensorFlow. However, TFApprox is
limited to inference and supports only 8-bit integer multiplication. In 2022, the
ApproxTrain project [19] overcame these limitations to provide a flexible framework
for implementing AM layers in any TensorFlow model for both training and inference
(see Section 4.1). The authors additionally showed that ApproxTrain models achieved
performance on par with precise models in almost all cases. Before delving into the

technical details of the framework, I will provide a brief explanation of the math

21



behind approximate multipliers and how they are implemented in computing.

22



Chapter 4

Approximate Multipliers

To execute various operations, computers have networks of transistors which form
logical circuits. The complete network must physically fit on the block of semicon-
ducting material ("die") which the CPU or GPU is fabricated from. Thus, designers of
these devices must carefully consider the die area devoted to each operation, choosing
where to allocate resources to maximize performance. One of these operations is
multiplication, which, as we have seen, is highly compute intensive. For many types
of computing, precise multiplication is necessary. But DNNs, due to their size and
imprecise nature, are resistant to small errors in multiplication results [43]. It is
possible to build logical circuits that perform approximate multiplication, computing a
slightly erroneous result, but at great savings to power consumption and the physical
size of the circuit [58]. These so-called approximate multipliers (AMs) replace or
supplant the precise floating-point multipliers in CPUs and GPUs, and can both
accelerate Al computing and reduce its power consumption [19]. This literature review
will discuss the concept and history of approximate multipliers and their use in neural

networks before diving into their use in the ApproxTrain framework.

23



One early approximate multiplier was created by Mitchell [42] and takes advantage
of the speed of computing binary logarithms in digital circuits. The binary log of an
integer can be approximated by taking the most significant "one" bit as the significand
of the logarithm and the rest of the bits as the mantissa. Note that in this context
significand refers to the significant digits of the number. To explain, consider the

usual binary representation of an N-bit unsigned integer by _1by_3...b1bq:

B=3 2, (4.1)

Say the most significant one bit in the integer is at position k, where (N —1) < k < 0.

B can then be written as:

B =2* <1 + kf 22'—’%1-) (4.2)

=0

Let x = N1 207kp,; where 0 < 2 < 1. The accurate binary log of B is then:

k—1
log, B = log, <2k (1 +> 2%‘-’%,-)) (4.3)

= log, (28 + (1 + 2)) (4.4)
=k +logy(1 + ) (4.5)

k, the most significant one bit of the sequence, forms the integer significand of the log
value and the rest of the bits form the mantissa. Successive computations give a more
accurate approximation of the result. For the purposes of approximate multipliers,

however, the mantissa logs(1+ z) is simply approximated as z, since 0 < x < 1. Then,

24



because log addition is the same operation as multiplication, the log values can be

added and a reverse log calculated to find the result.

Mitchell’s multiplier is very simple and fast, but has a high error bias. That is,
the mean of relative error compared to a precise result is large- around 3.7%. The
peak relative error is also high at 11.1%. More modern AM designs have lowered
these values significantly. One such design, Minimally Biased Multipliers (MBMs)
[58], augment the Mitchell multiplier with a novel error-reduction scheme. They offer
a near-zero error bias (0.05% mean relative error for an 8-bit multiplier and <0.1%
for a 16-bit one), have a lower peak error than the Mitchell multiplier (7.8%), and
can be configured to trade accuracy for power and area. MBMs provide a peak power
reduction of 84% and a peak area reduction of 75% compared to an accurate multiplier.
They are particularly applicable to the aims of this thesis because they lie on the
Pareto front for power efficiency versus peak error and mean error. That is, there is no
known multiplier which uses less power while achieving better error bias or peak error.

Because of this, they are the default multiplier used in the ApproxTrain framework.

4.1 ApproxTrain

The ApproxTrain project [19] comprises two main segments: a framework which
enables software simulation of AMs, and a paper detailing both relevant prior work
and the contributions made by said framework. ApproxTrain was developed for
TensorFlow [38], a library which simplifies the development of new Al models, allowing
the user to describe their architecture at a high level. For the end user, implementing
ApproxTrain AMs is as simple as compiling the framework and replacing precise

TensorFlow layers with AM-based ones in their model.

25



The framework provides two major software components: AMSim, a workflow for
transforming C/C++ models of specific AMs into software simulators, and Approx-
Train, a TensorFlow framework for training and inference of DNNs using AMSim
multipliers. In order to enable this functionality, the authors implemented a full
custom CUDA kernel for GPU-accelerated AM operations. CUDA [44] is a parallel
computing platform which can be used to accelerate many kinds of computing work-
loads using NVIDIA GPUs. Within CUDA, libraries such as cuBLAS (CUDA Basic
Linear Algebra) and cuDNN (CUDA Deep Neural Network) provide functionality for
accelerating DNN workloads. However, CUDA is a closed-source framework; it was
necessary for the ApproxTrain authors to reimplement many of its features to enable
AM functionality. Using AMSim and the custom CUDA kernel, it is possible for
researchers to simulate and test many kinds of multipliers with high evaluation speeds.
ApproxTrain’s authors note a 2500x performance increase over CPU simulation, and
the framework offers higher performance than existing GPU simulation libraries such

as TFApproximate.

However, it is important to note that AMs are a hardware technology. To harness
their full performance, they must be implemented physically. ApproxTrain is a
framework for simulating these hardware devices on traditional GPUs, allowing
researchers to develop and test AM designs much more quickly. The overhead of
software simulation means that models developed with ApproxTrain AMs will train
and infer much more slowly than models running on physical AMs, and in most cases
more slowly than models running on precise multipliers. The implementation work
performed in this thesis is not intended to demonstrate a more performant multiplier.
Instead, I hope to introduce and explain the concept of AMs and show how they might

be used to reduce energy usage in a future hardware DNN accelerator.

26



Due to the necessity of reimplementing a CUDA kernel, ApproxTrain is 1-5x slower
than standard TensorFlow for precise multiplication. The authors state that this is
reasonable because, as they put it, "the closed-source cuDNN and cuBLAS libraries
have been optimized by teams of several hundred professionals within Nvidia for over
a decade." When utilizing AMs for training and inference, ApproxTrain exhibits a
2-13x slowdown over standard TensorFlow, attributed to a lack of optimization and
the overhead of software AM simulation. ApproxTrain models tend to exhibit a slight
accuracy increase over models developed with precise multipliers, which the authors
hypothesize is due to stochastic noise produced by AMs’ lack of precision, which acts

as a type of regularization [45].

ApproxTrain is an advancement over prior work on AM frameworks. It is an
extremely useful tool for the development and testing of AM-based DNNs, and the
framework is used to build a model in the Technical Investigation (see Chapter 5)

portion of this thesis.

27



Chapter 5

Technical Investigation: AM-based

Neural Network

Using the ApproxTrain framework in TensorFlow, I reimplemented AlexNet [35]
with the goal of testing the performance of AMs in a novel scenario. As a CNN
designed for image classification, AlexNet is an excellent choice for this technical
investigation; it is primarily composed of two types of layers which ApproxTrain
provides drop-in replacements for. In addition, despite being a well-known network
that was state-of-the-art in 2012, AlexNet’s age made training possible in a manageable
time frame. Though related works [58] did use AlexNet for AM testing, they only
did so for inference, not training. The ApproxTrain paper itself tested LeNet [22]
and ResNet [27], two other well-known CNNs. LeNet, despite having a comparable
structure to AlexNet, is significantly simpler. Thus this testing is a useful iteration on

the work of the ApproxTrain authors.

28



LeNet AlexNet

| Image: 28 (height) x 28 (width) x 1 (channel) | Image: 224 (height) x 224 (width) x 3 (channels)]

v v

] Convolution with 5x5 kernel+2padding:28x28x6 \ ]Convolution with11x11 kernel+4stride:54x54x96\
\ sigmoid \ ReLu

| Pool with 2x2 average kernel+2 stride:14x14x6 | | Pool with 3x3 max. kernel+2 stride: 26x26x96 |

V V
' Convolution with 5x5 kernel (no pad): 10x10x16 | | Convolution with 5x5 kernel+2 pad:26x26x256 |

\, sigmoid v RelLu

| Pool with 2x2 average kernel+2 stride: 5x5x16 | | Pool with 3x3 max.kernel+2stride:12x12x256 |

v flatten v

] Dense: 120 fully connected neurons \ ] Convolution with 3x3 kernel+1 pad:12x12x384 \
\ sigmoid Vv ReLu

] Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
\, sigmoid Vv ReLu

] Dense: 10 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x256 |
v Vi Relu

Output: 1 of 10 classes | Pool with 3x3 max.kernel+2stride:5x5x256 |
v flatten

] Dense: 4096 fully connected neurons \
v ReLu, dropout p=0.5

] Dense: 4096 fully connected neurons |
v ReLu, dropout p=0.5

] Dense: 1000 fully connected neurons \

\%
Output: 1 of 1000 classes

Figure 5.1: Comparison of the LeNet and AlexNet convolution, pooling, and dense
layers [11].

29



5.1 Technical Details

Training was performed on my laptop, a 2021 ASUS ROG Zephryus GA401QM
[1] with an AMD Ryzen 9 5900HS CPU and an NVIDIA RTX 3060 GPU. Because
ApproxTrain was developed on Ubuntu 18.04 [66], it was necessary to modify the
Makefile to successfully compile the framework on my modern system. For ease
of integration, I trained inside the NVIDIA Container Runtime [47], a Docker [15]
container which contains prebuilt versions of TensorFlow and CUDA. This made

compiling ApproxTrain and running my test code much simpler.

I used a publicly available TensorFlow-based AlexNet implementation [5] as the
syntactic basis for my code, then modified it to add the features I needed and
incorporate AM-based layers. The final code and my modified version of ApproxTrain

are available on GitHub [33].

While AlexNet was originally designed to classify the 1000-class ImageNet dataset
[13] (as seen in Figure 5.1), I instead chose to train on the CIFAR-10 dataset [34],
because its smaller size enabled faster training. CIFAR-10 contains 60,000 32x32 color
images in 10 different classes, such as airplanes, birds, and cats. Because the dataset
provides only training and testing splits, I used the first 5,000 training images for

validation and the other 55,000 for training. I trained for 50 epochs.

Other than changing the dataset and incorporating AMs, I made no changes to the
architecture of AlexNet; my goal was to show that AMs could easily integrate into
an existing architecture. I tested both precise and approximate multipliers, training
each for 50 epochs. To ensure that the precise and approximate models would have
equal weights at the beginning of training, I explicitly set the TensorFlow random
seed. Both models use the Glorot Uniform initializer for their weights and initialize

biases to zero. While testing AMs, they were used for both training and inference.

30



For more detailed information on the development and testing process, see my Lab

Notebook (Section 7.1).

5.2 Training Results

For comparison, I first tested the AlexNet implementation with precise multipliers.
The final validation accuracy was 81.8%, but the final training accuracy was 98.5%,
indicating some overfitting of the model. Training completed in 46 minutes, for an

average time of 55 seconds per epoch.

AlexNet Accuracy, Precise Multipliers

== Training Accuracy == Validation Accuracy

100
<
= 80
[&]
©
S
Q
<
s 60
3
(]
=
)
(2]
<
(@) 40
0 10 20 30 40

Epoch

Figure 5.2: Accuracy plot for AlexNet using precise multipliers.

As seen in Figure 5.2, peak validation accuracy is reached early in training, with
very little accuracy increase past Epoch 20. Training accuracy, however, increases to

98.5% as the model overfits.

I then exchanged the Convolutional and Dense layers in the model for their AM-

based equivalents and retrained the network. As expected, AM-based training took

31



significantly longer; a total time of 20 hours and 4 minutes, for an average time of
24 minutes 48 seconds per epoch. The test accuracy was negligibly lower than the

precise training run at 81.7%, but the training accuracy was much lower at 93.4%.

AlexNet Accuracy, Approximate Multipliers

== Training Accuracy == Validation Accuracy

100
9
& 75
o
3
Q
g
c
S
T 50
(]
=
®
172
Rt
(@)
25
0 10 20 30 40

Epoch

Figure 5.3: Accuracy plot for AlexNet using approximate multipliers.

As Figure 5.3 shows, the AM-based model is significantly less accurate at the end
of the first training epoch. One explanation for this is that the error introduced by
AMs is harder to account for in the early stages of training. However, this result is
inconsistent with the results of the ApproxTrain paper, where accuracy was the same
at the first training step and increased at approximately the same rate throughout
training. Understanding the source of this discrepancy is one path for future research.
By the end of training, however, the validation accuracy of the approximate model
was equal to that of the precise model, a result consistent with previous investigations

into training with AMs.

Of note is the "spikiness" of the validation accuracy plot. While Figure 5.2 shows

a smooth increase in accuracy, the AM-based validation accuracy decreases several

32



times during training. This can be attributed to the model failing to account for the
AM error in the validation stage, since it has not encountered that data before. By

the end of training, accuracy remains steady.

At the end of training, AMs show a smaller discrepancy between training and
validation accuracy. This would appear to indicate that AMs reduce overfitting.
However, further investigation is warranted. Figure 5.4 compares the accuracy plots
for both types of multipliers. Here we see that despite the two multipliers displaying
different accuracies early in training, they learn at similar rates. While the discrepancy
between the training and validation accuracy scores is smaller at epoch 50 for AMs,
the slope of the training accuracy plot does not decrease as training continues. This
suggests that the model is less overfit not because of AMs but because it reached
peak accuracy later in training. If training had continued, the AM-based model
would likely have continued to overfit. Thus I conclude that AMs do not significantly
reduce overfitting for this model architecture and implementation. However, a future
work might investigate whether the usage of AMs reduces or eliminates the need for
regularization layers such as the Dropout layers used in AlexNet, since the noise they

introduce can have a regularizing effect [19].

Plotting the loss values (Figure 5.5) corroborates these conclusions. In the precise
run, while the training loss decreases steadily, the validation loss increases after epoch
23, when it reaches a minimum of 0.59. At epoch 50, the validation loss is 0.73,
indicating overfitting of the model. The initial training loss value of the approximate
run is much higher, but decreases quickly, and by epoch 50 has begun to converge with
that of the precise run. The approximate validation loss, however, does not decrease
steadily. Unlike the precise validation plot, it shows several upticks which correlate
with dips in the validation accuracy. At epoch 50, the approximate validation loss is

also much higher than the precise run (2.38), despite equal accuracy values.

33



AlexNet Accuracy, Precise vs. Approximate

== Precise Train Accuracy == Precise Validation Accuracy Approximate Train Accuracy
== Approximate Validation Accuracy

100
S
< S
g 75
2
<
c
S
= 50
(8]
=
@
2]
Y
O

25

0 10 20 30 40

Epoch

Figure 5.4: Accuracy plot for AlexNet comparing precise and accurate multipliers.

This technical investigation corroborates existing research into AM-based DNNs.
I showed minimal accuracy degradation compared to precise multipliers, even when
AMs are used during training. I conclude that AMs are a very promising technique

for reducing deep learning energy usage with few downsides.

34



AlexNet Loss Values, Precise vs. Approximate
== Precise Train Loss == Precise Validation Loss == Approximate Train Loss == Approximate Validation Loss

10

Loss Value

Epoch

Figure 5.5: Loss plot for AlexNet comparing precise and accurate multipliers.

35



Chapter 6

Conclusion

In this thesis I showed that the Al field’s technical advancements, while impressive,
have come at a great cost of energy and with a high carbon footprint. If Al is to remain
a practical technology in an uncertain future, we must consider methods for reducing
its resource consumption. I explained the architecture of modern AI technologies
and demonstrated why a key component — multiplication — is so computationally
expensive. With that knowledge in hand, I conducted a literature review discussing
existing research into reducing deep neural network power usage and showed why
approximate multipliers (AMs) are a promising technology for this application. I
analyzed the results of a novel technical investigation and found that it was possible to
train an AM-based neural network with minimal accuracy degradation, corroborating

existing results.

With all that in mind, I believe that AMs are deserving of much more research
and testing. A hardware implementation would allow a physical analysis of their
reduced energy usage. It has been shown that they can improve model performance in

several DNN architectures, and do so without retraining or additional integration work,

36



meaning they are much easier to implement than other techniques. A hardware AM-
based DNN accelerator could easily be installed in existing servers or integrated into
existing DNN computing architectures to reduce their energy usage and improve their
performance. Wide-scale implementation of such a technology could have a measurable

impact on the energy consumption of the Al space with few if any disadvantages.

37



Chapter 7

Appendix

7.1 Lab Notebook

2022-10-16

Attempting to install and use ApproxTrain. The software was designed on Ubuntu
18.04 and compilation failed initially. After troubleshooting, success came with

changing makefile:

o Use modern c++ (c++11 was specified, but my version of TensorFlow is written
in modern c++)

o Change CUDA location to correct one

After install, tested some of the LUTs. Results:

| LUT | Accuracy |

| MBM._ 7 | 0.9646 |
| MBM._ 5 | 0.9677 |

38



| MBM_ 1| 0.9547 |

Why is MBM_ 7 Higher? Retesting gives 0.94 and 0.96. Maybe test consistency of

this method, and test against standard TF mnist.

2022-11-01

Working on power management. Considering using a hacked kill-a-watt. NVML can
be used to get board power and has a python library, here patched for python3:

https://github.com/nicolargo/nvidia-ml-py3
But that breaks nvitop so I think default is ok (pip install nvidia-ml-py)

Because I'm using hybrid mode, the only think using my GPU is the compute, so this

is probably pretty accurate.

I can see power usage in tools like nvidia-smi and nvitop, just need to access these

power bindings and create a wrapper program.

xorg appears to be on gpu 0

i need to look into this

For the wrapper program- use subprocess? Then just sample every second and sum

the instantaneous values to get Wh.

Change number of training steps
track execution?
test scaling

power usage graph

39



2022-12-21

For my final project in Artificial Intelligence, I decided to use my thesis topic, giving
me the chance to organize my research and present the progress I'd made. I decided
to train my models on the MNIST fashion dataset, on the advice of Zach, as it's a
much more complex dataset than the original MNIST testing set that shipped with

the ApproxTrain demos. I should test the system on more datasets.

To save my work for the ApproxTrain modifications, I forked the repository at

github.com /knauth/ApproxTrain

Here I will include the most relevant portion of my writeup, the technical summary:

Project Summary and Results

My network is adapted from the ApproxTrain examples, and is made up of nine layers:

o Input Layer (Keras, 28x28)

o AMConv2D (Relu, 32 Filters, AM)

o MaxPooling2D (Keras, downsampling)
o AMConv2D (Relu, 32 Filters, AM)

o MaxPooling2D (Keras, downsampling)
o Flatten (Keras)

o DenseAM (Relu, AM)

« Dropout (Keras, prevents overfitting)

o DenseAM (Softmaz, 10 outputs, normalizing)

The results of training are summarized below, per-epoch. Four bit-widths were tested
for the Mitchell Logarithmic Multiplier (shown in parentheses), and the final row is
the default CUDA multiplier (mnist_fashion noam.py). The value shown is sparse

categorical accuracy.

40



Multiplier 1 2 3 4

0.71 0.71 0.76 0.80

0.72 0.67 0.80 0.80

)

12) 0.69 0.75 0.77 0.77
)
) 0.66 075 0.78 0.81

CUDA 0.88 0.89 090 091

There are several things to note about these results. Precise multipliers gain a ~10%
accuracy advantage, but they also have more predictable results per-epoch. At several

points we see a drop in accuracy when using AMs.

There is very little difference in results between bit-widths for the AMs. More research
could illuminate whether this is merely a consequence of the model architecture or

inherent to the technology.

The CUDA model is notably faster to run, contrary to expectations. This discrepancy
is explained in the ApproxTrain paper- the overhead of simulating AMs in software
means we lose the benefit of decades of hardware and software optimization by
thousands of people. FPGA-based AMs are proving a promising front for research, as

is custom silicon.

2023-02-16

After some more research into X and how it uses the GPUs, I've managed to prevent
Xorg from using my discrete GPU, which should give me more accurate results when

running models on it.

41



2023-04-11

I decided to drop the power tracking goal. It’s not incredibly relevant now that I
know AMs are going to use more power in software; how much isn’t important to their

actual hardware performance, and is mostly an implementation question.

I am unsatisfied with the work I've done so far for AM training and testing, so I am

implementing a more advanced network. I'm choosing AlexNet because:

1. It’s a CNN, with lots of Dense and Conv2D layers that can be swapped for AM

equivalents

2. Despite being advanced for the time, it’s old enough that I can train and run it

on my GPU in manageable time

3. It’s very popular as a framework for testing things like this, so I'm not straying

far from existing work

4. Despite the above, the ApproxTrain authors didn’t test it in their paper, mak-
ing this a novel experiment. The AT authors did test it on LeNet, which is
comparable in structure but less complex than AlexNet, so this is a useful

iteration.

AlexNet was developed to (and did) win the ImageNet classification competition in
2012. I'm training it on CIFAR-10, a much smaller dataset than ImageNet, due to

lack of computing power and time.

The structure of AlexNet, which I will make prettier in the actual writeup, is as

follows:

1. Input Image: 224x224x3 (width x height x channels)

42



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Convolution, 11x11 kernel + 4 stride, ReLU activation: 54x54x96

Batch Normalization

Pooling, 3x3 max. kernel + 2 stride, 26x26x96

Convolution, 5x5 kernel + 2 pad, RelLU: 26x26x256

Batch Normalization

Pooling, 3x3 max. kernel + 2 stride, 12x12x256

Convolution, 3x3 kernel + 1 pad, ReLU: 12x12x384

Batch Normalization

Convolution, 3x3 kernel + 1 pad, RelLU: 12x12x384

Batch Normalization

Convolution, 3x3 kernel + 1 pad, ReLU: 12x12x256

Batch Normalization

Pooling, 3x3 max. kernel + 2 stride: 5x5x256

Flatten

Dense, 4096 neurons, ReLLU

Dropout, rate 0.5

Dense, 4096 neurons, ReLU

Dense, 10 neurons, Softmax

43



The Convolutional and Dense layers are easily replaced for side-by-side testing. One
change- the AlexNet paper mentions a 227x227 input, but I’'m using 224x224, since
this change seems to be accepted as standard to make the convolutional math work

properly, perhaps indicating a mistake in the original work.

I'm choosing not to discuss convolutional networks in detail, because it’s not particu-

larly relevant; my goal is just to use this as a real-world example.

I ran into a particularly tricky set of issues running this. It had been some time
since I ran an ApproxTrain network, and I was surprised when it didn’t run, citing
being unable to find a CUDA library, since I hadn’t made any changes. More research
revealed that CUDA had been updated to version 12 in the intervening time, while
my AT version was compiled against CUDA 11. That was no problem; all I had to do
was recompile AT. It was after a few more hours of confusing errors that I realized
TensorFlow itself doesn’t support CUDA 12 yet, at least not in the mainline builds. I
tried to build it myself against CUDA 12, as well as downgrade my CUDA version,
but had little success with either. I solved the problem with NVIDIA’s container
runtime, which comes with a TensorFlow binary built against CUDA 12. I ran the

docker container, imported my code, rebuilt ApproxTrain, and I was good to go.

First I tested the default multipliers, which took about an hour training to 50 epochs.
That converged to ~81% accuracy relatively quickly and smoothly, in about 20 epochs.
Afterwards, training accuracy continued to increase, to 98%, while the validation

accuracy remained static, indicating significant overfitting.

Then I swapped out the layers for approximate equivalents. I knew it would be slower,
but I didn’t realize how much- about 20x slower in this case. The total training time
was 20h3min. The final accuracy was very similar at 82%, but the training was much

less smooth, and occasionally accuracy decreased per-epoch. If I were to test this

44



further I would try different optimizers; I used SGD here because it’s what AlexNet
specifies, but Adam might produce different results. AMs also started off at a much
lower accuracy; 23% accuracy as compared to 51% for default multipliers. I think this
might be my fault- I set a global seed for TF, but I am not sure that that means the
weights are initialized the same for every type of layer. If I have time, I want to rerun

this test with all weights explicitly initialized to zero.

Right now, I have pretty different results from the AT paper. They have AMs
improving accuracy at almost the same rate as traditional multipliers. As it is in my
results, AMs start off much worse, make quick gains, then slowly converge to the same

final accuracy number.

They also display a slightly smaller discrepancy between testing and validation accu-
racies, which is expected, but I think that discrepancy would increase if I trained it
longer. That is to say, I don’t think AMs decreased overfitting in this case, I think the

model had less time to overfit since it reached peak accuracy much later in training.

I'm going to make and include some nice-looking graphs in the results section.

2023-05-05

I met with Zack about the weirdness of the accuracy plot. Since both models are
using the same intializers, there shouldn’t be a difference between the plots. Still,
there is; I don’t think it’s about the size of the model, since the AT authors tested
smaller ones (LeNet) and showed a unified plot. It doesn’t super matter since the end

result is the same but it’s an interesting open problem.

45



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

7.2 Code

This is the Python code for the AlexNet CNN used to test ApproxTrain. [5] formed
a syntatic basis for the code, with instructions on how to implement the AlexNet
architecture in TensorFlow/Keras. This code was modified to enable ApproxTrain
AMs in training and evaluation. The code and modified ApproxTrain is also available

on GitHub. Below is the precise version which uses default CUDA multipliers:

import tensorflow as tf

import os

import time

import tensorflow_datasets as tfds

import sys

import keras

#from python.keras. layers.am_convolutional import AMConvZD
#from python.keras. layers.amdenselayer import denseam

# To ensure all training runs get the same starting point
tf.random.set seed(

20230414
)

# Load CIFAR10 Dataset

#(ds_train, ds_test), ds_info = tfds.load(
# 'ctfariO’,

split=["train', 'test'],
shuffle_files = True,
as_supervised = ITrue,

with_info = True,

)

H OB R R R

(train_images, train_labels), (test_images, test_labels) =
- keras.datasets.cifar10.load_data()

# Set class names
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog',
~ 'frog', 'horse', 'ship', 'truck']
def process_images(image, label):
# Normalize images to have a mean of O and standard deviation of

o 1

46



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

image = tf.image.per_image_standardization(image)
# Restize tmages from 32x32 to 227x227

image = tf.image.resize(image, (227,227))

return image, label

lut _file = './MBM _7.bin'

root_logdir = os.path.join(os.curdir, "logs/fit")
def get_run logdir():
run_id = time.strftime("run %Y Ym %d-%H_ %M _%S")
return os.path.join(root_logdir, run_id)

run_logdir = get_run_logdir()
tensorboard_cb = keras.callbacks.TensorBoard(run_logdir)

validation_images, validation_labels = train_images[:5000],
< train_labels[:5000]
train_images, train_labels = train_images[5000:], train_labels[5000:]

train_ds = tf.data.Dataset.from_tensor_slices((train_images,

< train labels))

test_ds = tf.data.Dataset.from_tensor_slices((test_images,

— test_labels))

validation_ds = tf.data.Dataset.from_tensor_slices((validation_images,
— validation labels))

train_ds_size = tf.data.experimental.cardinality(train_ds) .numpy ()
test_ds_size = tf.data.experimental.cardinality(test_ds) .numpy()
validation ds size =

< tf.data.experimental.cardinality(validation_ds) .numpy ()

print("Training data size:", train_ds_size)
print("Test data size:", test_ds_size)
print("Validation data size:", validation_ds_size)

train ds = (train_ds\
.map (process_images)
.shuffle(buffer_size=6000)
.batch(batch_size=32, drop_remainder=True))

test_ds = (test_ds\
.map (process_images)
.shuffle(buffer_size=6000)
.batch(batch_size=32, drop_remainder=True))

validation ds = (validation ds\

47



71

72

73

74

76

7

78

79

80

81

82

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>